python函數(shù)回歸 python中回歸分析的算法

python線性回歸有哪些方法

線性回歸:

公司主營業(yè)務(wù):成都網(wǎng)站設(shè)計、成都網(wǎng)站建設(shè)、移動網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。成都創(chuàng)新互聯(lián)是一支青春激揚、勤奮敬業(yè)、活力青春激揚、勤奮敬業(yè)、活力澎湃、和諧高效的團隊。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團隊有機會用頭腦與智慧不斷的給客戶帶來驚喜。成都創(chuàng)新互聯(lián)推出長泰免費做網(wǎng)站回饋大家。

設(shè)x,y分別為一組數(shù)據(jù),代碼如下

import matplotlib.pyplot as plt

import numpy as np

ro=np.polyfit(x,y,deg=1) #deg為擬合的多項式的次數(shù)(線性回歸就選1)

ry=np.polyval(ro,x) #忘記x和ro哪個在前哪個在后了。。。

print ro #輸出的第一個數(shù)是斜率k,第二個數(shù)是縱截距b

plt.scatter(x,y)

plt.plot(x,ry)

python邏輯回歸怎么求正系數(shù)

Python 邏輯回歸求正系數(shù)的方法可以分為兩種:

1. 使用線性模型的求解方法:可以使用sklearn中的LogisticRegression類來求解正系數(shù),調(diào)用其中的fit()方法就可以求解出正系數(shù)。

2. 使用梯度下降法:可以自己實現(xiàn)梯度下降法,通過不斷迭代更新正系數(shù),最終獲得最優(yōu)的正系數(shù)。

求python支持向量機多元回歸預(yù)測代碼

這是一段用 Python 來實現(xiàn) SVM 多元回歸預(yù)測的代碼示例:

# 導(dǎo)入相關(guān)庫

from sklearn import datasets

from sklearn.svm import SVR

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

# 加載數(shù)據(jù)集

X, y = datasets.load_boston(return_X_y=True)

# 將數(shù)據(jù)集拆分為訓(xùn)練集和測試集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 創(chuàng)建SVM多元回歸模型

reg = SVR(C=1.0, epsilon=0.2)

# 訓(xùn)練模型

reg.fit(X_train, y_train)

# 預(yù)測結(jié)果

y_pred = reg.predict(X_test)

# 計算均方誤差

mse = mean_squared_error(y_test, y_pred)

print("Mean Squared Error:", mse)

在這段代碼中,首先導(dǎo)入了相關(guān)的庫,包括 SVR 函數(shù)、train_test_split 函數(shù)和 mean_squared_error 函數(shù)。然后,使用 load_boston 函數(shù)加載數(shù)據(jù)集,并將數(shù)據(jù)集分為訓(xùn)練集和測試集。接著,使用 SVR 函數(shù)創(chuàng)建了一個 SVM 多元回歸模型,并使用 fit 函數(shù)對模型進行訓(xùn)練。最后,使用 predict 函數(shù)進行預(yù)測,并使用 mean_squared_error 函數(shù)計算均方誤差。

需要注意的是,這僅僅是一個示例代碼,在實際應(yīng)用中,可能需要根據(jù)項目的需求進行更改,例如使用不同的超參數(shù)

網(wǎng)站欄目:python函數(shù)回歸 python中回歸分析的算法
URL地址:http://m.kartarina.com/article30/doggopo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設(shè)App開發(fā)商城網(wǎng)站網(wǎng)頁設(shè)計公司品牌網(wǎng)站制作小程序開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

小程序開發(fā)
主站蜘蛛池模板: 久久久久亚洲AV无码专区首JN| 无码av人妻一区二区三区四区| 亚洲人成无码www久久久| 亚洲国产精品无码久久九九大片 | 欧美性生交xxxxx无码影院∵| 人妻av中文字幕无码专区| 精品国产毛片一区二区无码| 麻豆亚洲AV永久无码精品久久 | 免费无码成人AV在线播放不卡 | 在线精品免费视频无码的| 在线无码午夜福利高潮视频| 国产AV无码专区亚洲AV男同| 亚洲AV无码AV吞精久久| 亚洲日韩欧洲无码av夜夜摸| 特级小箩利无码毛片| 无码人妻精品一区二区三区99不卡| 亚洲AV无码国产丝袜在线观看| 国产精品第一区揄拍无码| 人妻丰满av无码中文字幕| 久久无码精品一区二区三区| 好了av第四综合无码久久| 免费A级毛片av无码| 亚洲精品无码Av人在线观看国产 | 亚洲精品无码久久久久AV麻豆| 精品亚洲AV无码一区二区三区 | 无码8090精品久久一区| 无码人妻精品一区二区三| V一区无码内射国产| 无码精品前田一区二区| 久久久久久AV无码免费网站下载 | 无码AV天堂一区二区三区| 永久免费无码日韩视频| 极品无码国模国产在线观看| 亚洲AV无码一区二区三区性色| 人妻无码一区二区三区免费| 久久青青草原亚洲AV无码麻豆| 中文字幕无码乱人伦| 少妇人妻av无码专区| 日日摸日日碰人妻无码| 精品无码中出一区二区| 色欲AV无码一区二区三区|