==================================

成都創新互聯2013年至今,是專業互聯網技術服務公司,擁有項目網站制作、成都網站設計網站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元臺山做網站,已為上家服務,為臺山各地企業和個人服務,聯系電話:18982081108
將列表傳遞給函數后,函數就能直接訪問其內容
假設有一個用戶列表,要問候其中的每位用戶
將列表傳遞給函數后,函數就可對其進行修改,在函數中對這個列表所做的任何修改都是永久性的
一家為用戶提交的設計制作3D打印模型的公司,需要打印的設計存儲在一個列表中,打印后轉移到另一個列表中。
有時候需要禁止函數修改列表,為解決這個問題,可想向函數傳遞列表的副本而不是元件;這樣函數所做的任何修改都只影響副本,不影響元件
有時候,預先布置的函數需要接受多少個實參,python允許函數從調用語句中手機任意數量的實參
一個制作披薩的寒素,它需要接受很多配料,但無法確定顧客要多少種配料,下面函數只有一個形參*toppings,不管調用語句提供了多少實參,這個形參都將他們統統收入囊中
如果要讓函數接受不同類型的實參,必須在函數定義中將接納任意數量實參的形參放在最后
python先匹配位置實參和關鍵字實參,再將余下的實參收集到最后一個形參中
如果前邊的函數還需要一個表示披薩尺寸的實參,必須將該形參放在*toppings的前面
有時候,需要接受任意數量的實參,但預先不知道傳遞給函數的會是射門楊的信息,再這種情況下,可將函數編寫成能夠接受任意數量的鍵-值對,調用語句提供了多少就接受多少
創建用戶簡介:你知道你將收到有關用戶的信息,但不確定會是什么樣的信息,在下面示例中,build_profile()接受名和姓,同時還接受任意數量的關鍵字實參
想象一下,您有一個線性方程組和不等式系統。這樣的系統通常有許多可能的解決方案。線性規劃是一組數學和計算工具,可讓您找到該系統的特定解,該解對應于某些其他線性函數的最大值或最小值。
混合整數線性規劃是 線性規劃 的擴展。它處理至少一個變量采用離散整數而不是連續值的問題。盡管乍一看混合整數問題與連續變量問題相似,但它們在靈活性和精度方面具有顯著優勢。
整數變量對于正確表示自然用整數表示的數量很重要,例如生產的飛機數量或服務的客戶數量。
一種特別重要的整數變量是 二進制變量 。它只能取 零 或 一 的值,在做出是或否的決定時很有用,例如是否應該建造工廠或者是否應該打開或關閉機器。您還可以使用它們來模擬邏輯約束。
線性規劃是一種基本的優化技術,已在科學和數學密集型領域使用了數十年。它精確、相對快速,適用于一系列實際應用。
混合整數線性規劃允許您克服線性規劃的許多限制。您可以使用分段線性函數近似非線性函數、使用半連續變量、模型邏輯約束等。它是一種計算密集型工具,但計算機硬件和軟件的進步使其每天都更加適用。
通常,當人們試圖制定和解決優化問題時,第一個問題是他們是否可以應用線性規劃或混合整數線性規劃。
以下文章說明了線性規劃和混合整數線性規劃的一些用例:
隨著計算機能力的增強、算法的改進以及更多用戶友好的軟件解決方案的出現,線性規劃,尤其是混合整數線性規劃的重要性隨著時間的推移而增加。
解決線性規劃問題的基本方法稱為,它有多種變體。另一種流行的方法是。
混合整數線性規劃問題可以通過更復雜且計算量更大的方法來解決,例如,它在幕后使用線性規劃。這種方法的一些變體是,它涉及使用 切割平面 ,以及。
有幾種適用于線性規劃和混合整數線性規劃的合適且眾所周知的 Python 工具。其中一些是開源的,而另一些是專有的。您是否需要免費或付費工具取決于問題的規模和復雜性,以及對速度和靈活性的需求。
值得一提的是,幾乎所有廣泛使用的線性規劃和混合整數線性規劃庫都是以 Fortran 或 C 或 C++ 原生和編寫的。這是因為線性規劃需要對(通常很大)矩陣進行計算密集型工作。此類庫稱為求解器。Python 工具只是求解器的包裝器。
Python 適合圍繞本機庫構建包裝器,因為它可以很好地與 C/C++ 配合使用。對于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有關此酷功能的更多信息,請查看以下資源:
基本上,當您定義和求解模型時,您使用 Python 函數或方法調用低級庫,該庫執行實際優化工作并將解決方案返回給您的 Python 對象。
幾個免費的 Python 庫專門用于與線性或混合整數線性規劃求解器交互:
在本教程中,您將使用SciPy和PuLP來定義和解決線性規劃問題。
在本節中,您將看到線性規劃問題的兩個示例:
您將在下一節中使用 Python 來解決這兩個問題。
考慮以下線性規劃問題:
你需要找到X和?使得紅色,藍色和黃色的不平等,以及不平等X 0和? 0,是滿意的。同時,您的解決方案必須對應于z的最大可能值。
您需要找到的自變量(在本例中為 x 和 y )稱為 決策變量 。要最大化或最小化的決策變量的函數(在本例中為 z) 稱為 目標函數 、 成本函數 或僅稱為 目標 。您需要滿足的 不等式 稱為 不等式約束 。您還可以在稱為 等式約束 的約束中使用方程。
這是您如何可視化問題的方法:
紅線代表的功能2 X + Y = 20,和它上面的紅色區域示出了紅色不等式不滿足。同樣,藍線是函數 4 x + 5 y = 10,藍色區域被禁止,因為它違反了藍色不等式。黃線是 x + 2 y = 2,其下方的黃色區域是黃色不等式無效的地方。
如果您忽略紅色、藍色和黃色區域,則僅保留灰色區域。灰色區域的每個點都滿足所有約束,是問題的潛在解決方案。該區域稱為 可行域 ,其點為 可行解 。在這種情況下,有無數可行的解決方案。
您想最大化z。對應于最大z的可行解是 最優解 。如果您嘗試最小化目標函數,那么最佳解決方案將對應于其可行的最小值。
請注意,z是線性的。你可以把它想象成一個三維空間中的平面。這就是為什么最優解必須在可行區域的 頂點 或角上的原因。在這種情況下,最佳解決方案是紅線和藍線相交的點,稍后您將看到。
有時,可行區域的整個邊緣,甚至整個區域,都可以對應相同的z值。在這種情況下,您有許多最佳解決方案。
您現在已準備好使用綠色顯示的附加等式約束來擴展問題:
方程式 x + 5 y = 15,以綠色書寫,是新的。這是一個等式約束。您可以通過向上一張圖像添加相應的綠線來將其可視化:
現在的解決方案必須滿足綠色等式,因此可行區域不再是整個灰色區域。它是綠線從與藍線的交點到與紅線的交點穿過灰色區域的部分。后一點是解決方案。
如果插入x的所有值都必須是整數的要求,那么就會得到一個混合整數線性規劃問題,可行解的集合又會發生變化:
您不再有綠線,只有沿線的x值為整數的點。可行解是灰色背景上的綠點,此時最優解離紅線最近。
這三個例子說明了 可行的線性規劃問題 ,因為它們具有有界可行區域和有限解。
如果沒有解,線性規劃問題是 不可行的 。當沒有解決方案可以同時滿足所有約束時,通常會發生這種情況。
例如,考慮如果添加約束x + y 1會發生什么。那么至少有一個決策變量(x或y)必須是負數。這與給定的約束x 0 和y 0相沖突。這樣的系統沒有可行的解決方案,因此稱為不可行的。
另一個示例是添加與綠線平行的第二個等式約束。這兩行沒有共同點,因此不會有滿足這兩個約束的解決方案。
一個線性規劃問題是 無界的 ,如果它的可行區域是無界,將溶液不是有限。這意味著您的變量中至少有一個不受約束,可以達到正無窮大或負無窮大,從而使目標也無限大。
例如,假設您采用上面的初始問題并刪除紅色和黃色約束。從問題中刪除約束稱為 放松 問題。在這種情況下,x和y不會在正側有界。您可以將它們增加到正無窮大,從而產生無限大的z值。
在前面的部分中,您研究了一個與任何實際應用程序無關的抽象線性規劃問題。在本小節中,您將找到與制造業資源分配相關的更具體和實用的優化問題。
假設一家工廠生產四種不同的產品,第一種產品的日產量為x ?,第二種產品的產量為x 2,依此類推。目標是確定每種產品的利潤最大化日產量,同時牢記以下條件:
數學模型可以這樣定義:
目標函數(利潤)在條件 1 中定義。人力約束遵循條件 2。對原材料 A 和 B 的約束可以從條件 3 和條件 4 中通過對每種產品的原材料需求求和得出。
最后,產品數量不能為負,因此所有決策變量必須大于或等于零。
與前面的示例不同,您無法方便地將其可視化,因為它有四個決策變量。但是,無論問題的維度如何,原理都是相同的。
在本教程中,您將使用兩個Python 包來解決上述線性規劃問題:
SciPy 設置起來很簡單。安裝后,您將擁有開始所需的一切。它的子包 scipy.optimize 可用于線性和非線性優化。
PuLP 允許您選擇求解器并以更自然的方式表述問題。PuLP 使用的默認求解器是COIN-OR Branch and Cut Solver (CBC)。它連接到用于線性松弛的COIN-OR 線性規劃求解器 (CLP)和用于切割生成的COIN-OR 切割生成器庫 (CGL)。
另一個偉大的開源求解器是GNU 線性規劃工具包 (GLPK)。一些著名且非常強大的商業和專有解決方案是Gurobi、CPLEX和XPRESS。
除了在定義問題時提供靈活性和運行各種求解器的能力外,PuLP 使用起來不如 Pyomo 或 CVXOPT 等替代方案復雜,后者需要更多的時間和精力來掌握。
要學習本教程,您需要安裝 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安裝兩者:
您可能需要運行pulptest或sudo pulptest啟用 PuLP 的默認求解器,尤其是在您使用 Linux 或 Mac 時:
或者,您可以下載、安裝和使用 GLPK。它是免費和開源的,適用于 Windows、MacOS 和 Linux。在本教程的后面部分,您將看到如何將 GLPK(除了 CBC)與 PuLP 一起使用。
在 Windows 上,您可以下載檔案并運行安裝文件。
在 MacOS 上,您可以使用 Homebrew:
在 Debian 和 Ubuntu 上,使用apt來安裝glpk和glpk-utils:
在Fedora,使用dnf具有glpk-utils:
您可能還會發現conda對安裝 GLPK 很有用:
安裝完成后,可以查看GLPK的版本:
有關詳細信息,請參閱 GLPK 關于使用Windows 可執行文件和Linux 軟件包進行安裝的教程。
在本節中,您將學習如何使用 SciPy優化和求根庫進行線性規劃。
要使用 SciPy 定義和解決優化問題,您需要導入scipy.optimize.linprog():
現在您已經linprog()導入,您可以開始優化。
讓我們首先解決上面的線性規劃問題:
linprog()僅解決最小化(而非最大化)問題,并且不允許具有大于或等于符號 ( ) 的不等式約束。要解決這些問題,您需要在開始優化之前修改您的問題:
引入這些更改后,您將獲得一個新系統:
該系統與原始系統等效,并且將具有相同的解決方案。應用這些更改的唯一原因是克服 SciPy 與問題表述相關的局限性。
下一步是定義輸入值:
您將上述系統中的值放入適當的列表、元組或NumPy 數組中:
注意:請注意行和列的順序!
約束左側和右側的行順序必須相同。每一行代表一個約束。
來自目標函數和約束左側的系數的順序必須匹配。每列對應一個決策變量。
下一步是以與系數相同的順序定義每個變量的界限。在這種情況下,它們都在零和正無窮大之間:
此語句是多余的,因為linprog()默認情況下采用這些邊界(零到正無窮大)。
注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最后,是時候優化和解決您感興趣的問題了。你可以這樣做linprog():
參數c是指來自目標函數的系數。A_ub和b_ub分別與不等式約束左邊和右邊的系數有關。同樣,A_eq并b_eq參考等式約束。您可以使用bounds提供決策變量的下限和上限。
您可以使用該參數method來定義要使用的線性規劃方法。有以下三種選擇:
linprog() 返回具有以下屬性的數據結構:
您可以分別訪問這些值:
這就是您獲得優化結果的方式。您還可以以圖形方式顯示它們:
如前所述,線性規劃問題的最優解位于可行區域的頂點。在這種情況下,可行區域只是藍線和紅線之間的綠線部分。最優解是代表綠線和紅線交點的綠色方塊。
如果要排除相等(綠色)約束,只需刪除參數A_eq并b_eq從linprog()調用中刪除:
解決方案與前一種情況不同。你可以在圖表上看到:
在這個例子中,最優解是紅色和藍色約束相交的可行(灰色)區域的紫色頂點。其他頂點,如黃色頂點,具有更高的目標函數值。
您可以使用 SciPy 來解決前面部分所述的資源分配問題:
和前面的例子一樣,你需要從上面的問題中提取必要的向量和矩陣,將它們作為參數傳遞給.linprog(),然后得到結果:
結果告訴您最大利潤是1900并且對應于x ? = 5 和x ? = 45。在給定條件下生產第二和第四個產品是沒有利潤的。您可以在這里得出幾個有趣的結論:
opt.statusis0和opt.successis True,說明優化問題成功求解,最優可行解。
SciPy 的線性規劃功能主要用于較小的問題。對于更大和更復雜的問題,您可能會發現其他庫更適合,原因如下:
幸運的是,Python 生態系統為線性編程提供了幾種替代解決方案,這些解決方案對于更大的問題非常有用。其中之一是 PuLP,您將在下一節中看到它的實際應用。
PuLP 具有比 SciPy 更方便的線性編程 API。您不必在數學上修改您的問題或使用向量和矩陣。一切都更干凈,更不容易出錯。
像往常一樣,您首先導入您需要的內容:
現在您已經導入了 PuLP,您可以解決您的問題。
您現在將使用 PuLP 解決此系統:
第一步是初始化一個實例LpProblem來表示你的模型:
您可以使用該sense參數來選擇是執行最小化(LpMinimize或1,這是默認值)還是最大化(LpMaximize或-1)。這個選擇會影響你的問題的結果。
一旦有了模型,就可以將決策變量定義為LpVariable類的實例:
您需要提供下限,lowBound=0因為默認值為負無窮大。該參數upBound定義了上限,但您可以在此處省略它,因為它默認為正無窮大。
可選參數cat定義決策變量的類別。如果您使用的是連續變量,則可以使用默認值"Continuous"。
您可以使用變量x和y創建表示線性表達式和約束的其他 PuLP 對象:
當您將決策變量與標量相乘或構建多個決策變量的線性組合時,您會得到一個pulp.LpAffineExpression代表線性表達式的實例。
注意:您可以增加或減少變量或表達式,你可以乘他們常數,因為紙漿類實現一些Python的特殊方法,即模擬數字類型一樣__add__(),__sub__()和__mul__()。這些方法用于像定制運營商的行為+,-和*。
類似地,您可以將線性表達式、變量和標量與運算符 ==、=以獲取表示模型線性約束的紙漿.LpConstraint實例。
注:也有可能與豐富的比較方法來構建的約束.__eq__(),.__le__()以及.__ge__()定義了運營商的行為==,=。
考慮到這一點,下一步是創建約束和目標函數并將它們分配給您的模型。您不需要創建列表或矩陣。只需編寫 Python 表達式并使用+=運算符將它們附加到模型中:
在上面的代碼中,您定義了包含約束及其名稱的元組。LpProblem允許您通過將約束指定為元組來向模型添加約束。第一個元素是一個LpConstraint實例。第二個元素是該約束的可讀名稱。
設置目標函數非常相似:
或者,您可以使用更短的符號:
現在您已經添加了目標函數并定義了模型。
注意:您可以使用運算符將 約束或目標附加到模型中,+=因為它的類LpProblem實現了特殊方法.__iadd__(),該方法用于指定 的行為+=。
對于較大的問題,lpSum()與列表或其他序列一起使用通常比重復+運算符更方便。例如,您可以使用以下語句將目標函數添加到模型中:
它產生與前一條語句相同的結果。
您現在可以看到此模型的完整定義:
模型的字符串表示包含所有相關數據:變量、約束、目標及其名稱。
注意:字符串表示是通過定義特殊方法構建的.__repr__()。有關 的更多詳細信息.__repr__(),請查看Pythonic OOP 字符串轉換:__repr__vs__str__ .
最后,您已準備好解決問題。你可以通過調用.solve()你的模型對象來做到這一點。如果要使用默認求解器 (CBC),則不需要傳遞任何參數:
.solve()調用底層求解器,修改model對象,并返回解決方案的整數狀態,1如果找到了最優解。有關其余狀態代碼,請參閱LpStatus[]。
你可以得到優化結果作為 的屬性model。該函數value()和相應的方法.value()返回屬性的實際值:
model.objective持有目標函數model.constraints的值,包含松弛變量的值,以及對象x和y具有決策變量的最優值。model.variables()返回一個包含決策變量的列表:
如您所見,此列表包含使用 的構造函數創建的確切對象LpVariable。
結果與您使用 SciPy 獲得的結果大致相同。
注意:注意這個方法.solve()——它會改變對象的狀態,x并且y!
您可以通過調用查看使用了哪個求解器.solver:
輸出通知您求解器是 CBC。您沒有指定求解器,因此 PuLP 調用了默認求解器。
如果要運行不同的求解器,則可以將其指定為 的參數.solve()。例如,如果您想使用 GLPK 并且已經安裝了它,那么您可以solver=GLPK(msg=False)在最后一行使用。請記住,您還需要導入它:
現在你已經導入了 GLPK,你可以在里面使用它.solve():
該msg參數用于顯示來自求解器的信息。msg=False禁用顯示此信息。如果要包含信息,則只需省略msg或設置msg=True。
您的模型已定義并求解,因此您可以按照與前一種情況相同的方式檢查結果:
使用 GLPK 得到的結果與使用 SciPy 和 CBC 得到的結果幾乎相同。
一起來看看這次用的是哪個求解器:
正如您在上面用突出顯示的語句定義的那樣model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您還可以使用 PuLP 來解決混合整數線性規劃問題。要定義整數或二進制變量,只需傳遞cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不變:
在本例中,您有一個整數變量并獲得與之前不同的結果:
Nowx是一個整數,如模型中所指定。(從技術上講,它保存一個小數點后為零的浮點值。)這一事實改變了整個解決方案。讓我們在圖表上展示這一點:
如您所見,最佳解決方案是灰色背景上最右邊的綠點。這是兩者的最大價值的可行的解決方案x和y,給它的最大目標函數值。
GLPK 也能夠解決此類問題。
現在你可以使用 PuLP 來解決上面的資源分配問題:
定義和解決問題的方法與前面的示例相同:
在這種情況下,您使用字典 x來存儲所有決策變量。這種方法很方便,因為字典可以將決策變量的名稱或索引存儲為鍵,將相應的LpVariable對象存儲為值。列表或元組的LpVariable實例可以是有用的。
上面的代碼產生以下結果:
如您所見,該解決方案與使用 SciPy 獲得的解決方案一致。最有利可圖的解決方案是每天生產5.0第一件產品和45.0第三件產品。
讓我們把這個問題變得更復雜和有趣。假設由于機器問題,工廠無法同時生產第一種和第三種產品。在這種情況下,最有利可圖的解決方案是什么?
現在您有另一個邏輯約束:如果x ? 為正數,則x ? 必須為零,反之亦然。這是二元決策變量非常有用的地方。您將使用兩個二元決策變量y ? 和y ?,它們將表示是否生成了第一個或第三個產品:
除了突出顯示的行之外,代碼與前面的示例非常相似。以下是差異:
這是解決方案:
事實證明,最佳方法是排除第一種產品而只生產第三種產品。
就像有許多資源可以幫助您學習線性規劃和混合整數線性規劃一樣,還有許多具有 Python 包裝器的求解器可用。這是部分列表:
其中一些庫,如 Gurobi,包括他們自己的 Python 包裝器。其他人使用外部包裝器。例如,您看到可以使用 PuLP 訪問 CBC 和 GLPK。
您現在知道什么是線性規劃以及如何使用 Python 解決線性規劃問題。您還了解到 Python 線性編程庫只是本機求解器的包裝器。當求解器完成其工作時,包裝器返回解決方案狀態、決策變量值、松弛變量、目標函數等。
1、函數定義
①使用def關鍵字定義函數
②
def 函數名(參數1.參數2.參數3...):
"""文檔字符串,docstring,用來說明函數的作用"""
#函數體
return 表達式
注釋的作用:說明函數是做什么的,函數有什么功能。
③遇到冒號要縮進,冒號后面所有的縮進的代碼塊構成了函數體,描述了函數是做什么的,即函數的功能是什么。Python函數的本質與數學中的函數的本質是一致的。
2、函數調用
①函數必須先定義,才能調用,否則會報錯。
②無參數時函數的調用:函數名(),有參數時函數的調用:函數名(參數1.參數2.……)
③不要在定義函數的時候在函數體里面調用本身,否則會出不來,陷入循環調用。
④函數需要調用函數體才會被執行,單純的只是定義函數是不會被執行的。
⑤Debug工具中Step into進入到調用的函數里,Step Into My Code進入到調用的模塊里函數。
一、遺傳算法介紹
遺傳算法是通過模擬大自然中生物進化的歷程,來解決問題的。大自然中一個種群經歷過若干代的自然選擇后,剩下的種群必定是適應環境的。把一個問題所有的解看做一個種群,經歷過若干次的自然選擇以后,剩下的解中是有問題的最優解的。當然,只能說有最優解的概率很大。這里,我們用遺傳算法求一個函數的最大值。
f(x) = 10 * sin( 5x ) + 7 * cos( 4x ), 0 = x = 10
1、將自變量x進行編碼
取基因片段的長度為10, 則10位二進制位可以表示的范圍是0到1023。基因與自變量轉變的公式是x = b2d(individual) * 10 / 1023。構造初始的種群pop。每個個體的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2、計算目標函數值
根據自變量與基因的轉化關系式,求出每個個體的基因對應的自變量,然后將自變量代入函數f(x),求出每個個體的目標函數值。
3、適應度函數
適應度函數是用來評估個體適應環境的能力,是進行自然選擇的依據。本題的適應度函數直接將目標函數值中的負值變成0. 因為我們求的是最大值,所以要使目標函數值是負數的個體不適應環境,使其繁殖后代的能力為0.適應度函數的作用將在自然選擇中體現。
4、自然選擇
自然選擇的思想不再贅述,操作使用輪盤賭算法。其具體步驟:
假設種群中共5個個體,適應度函數計算出來的個體適應性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果將fitvalue畫到圓盤上,值的大小表示在圓盤上的面積。在轉動輪盤的過程中,單個模塊的面積越大則被選中的概率越大。選擇的方法是將fitvalue轉化為[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后產生5個0-1之間的隨機數,將隨機數從小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],則將0號個體、1號個體、4號個體、4號個體、4號個體拷貝到新種群中。自然選擇的結果使種群更符合條件了。
5、繁殖
假設個體a、b的基因是
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
這兩個個體發生基因交換的概率pc = 0.6.如果要發生基因交換,則產生一個隨機數point表示基因交換的位置,假設point = 4,則:
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
交換后為:
a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]
6、突變
遍歷每一個個體,基因的每一位發生突變(0變為1,1變為0)的概率為0.001.突變可以增加解空間
二、代碼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def b2d(b): #將二進制轉化為十進制 x∈[0,10] t = 0 for j in range(len(b)): t += b[j] * (math.pow(2, j)) t = t * 10 / 1023 return tpopsize = 50 #種群的大小#用遺傳算法求函數最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的長度pc = 0.6 #兩個個體交叉的概率pm = 0.001; #基因突變的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(popsize)]for i in range(100): #繁殖100代 objvalue = calobjvalue(pop) #計算目標函數值 fitvalue = calfitvalue(objvalue); #計算個體的適應值 [bestindividual, bestfit] = best(pop, fitvalue) #選出最好的個體和最好的函數值 results.append([bestfit,b2d(bestindividual)]) #每次繁殖,將最好的結果記錄下來 selection(pop, fitvalue) #自然選擇,淘汰掉一部分適應性低的個體 crossover(pop, pc) #交叉繁殖 mutation(pop, pc) #基因突變 results.sort() print(results[-1]) #打印函數最大值和對應的
來自CODE的代碼片
GA.py
1
2
3
4
5
6
7
8
9
def best(pop, fitvalue): #找出適應函數值中最大值,和對應的個體 px = len(pop) bestindividual = [] bestfit = fitvalue[0] for i in range(1,px): if(fitvalue[i] bestfit): bestfit = fitvalue[i] bestindividual = pop[i] return [bestindividual, bestfit]
來自CODE的代碼片
best.py
1
2
3
4
5
6
7
8
9
10
11
def calfitvalue(objvalue):#轉化為適應值,目標函數值越大越好,負值淘汰。 fitvalue = [] temp = 0.0 Cmin = 0; for i in range(len(objvalue)): if(objvalue[i] + Cmin 0): temp = Cmin + objvalue[i] else: temp = 0.0 fitvalue.append(temp) return fitvalue
來自CODE的代碼片
calfitvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import mathdef decodechrom(pop): #將種群的二進制基因轉化為十進制(0,1023) temp = []; for i in range(len(pop)): t = 0; for j in range(10): t += pop[i][j] * (math.pow(2, j)) temp.append(t) return tempdef calobjvalue(pop): #計算目標函數值 temp1 = []; objvalue = []; temp1 = decodechrom(pop) for i in range(len(temp1)): x = temp1[i] * 10 / 1023 #(0,1023)轉化為 (0,10) objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) return objvalue #目標函數值objvalue[m] 與個體基因 pop[m] 對應
來自CODE的代碼片
calobjvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import randomdef crossover(pop, pc): #個體間交叉,實現基因交換 poplen = len(pop) for i in range(poplen - 1): if(random.random() pc): cpoint = random.randint(0,len(pop[0])) temp1 = [] temp2 = [] temp1.extend(pop[i][0 : cpoint]) temp1.extend(pop[i+1][cpoint : len(pop[i])]) temp2.extend(pop[i+1][0 : cpoint]) temp2.extend(pop[i][cpoint : len(pop[i])]) pop[i] = temp1 pop[i+1] = temp2
來自CODE的代碼片
crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
import randomdef mutation(pop, pm): #基因突變 px = len(pop) py = len(pop[0]) for i in range(px): if(random.random() pm): mpoint = random.randint(0,py-1) if(pop[i][mpoint] == 1): pop[i][mpoint] = 0 else: pop[i][mpoint] = 1
來自CODE的代碼片
mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import randomdef sum(fitvalue): total = 0 for i in range(len(fitvalue)): total += fitvalue[i] return totaldef cumsum(fitvalue): for i in range(len(fitvalue)): t = 0; j = 0; while(j = i): t += fitvalue[j] j = j + 1 fitvalue[i] = t;def selection(pop, fitvalue): #自然選擇(輪盤賭算法) newfitvalue = [] totalfit = sum(fitvalue) for i in range(len(fitvalue)): newfitvalue.append(fitvalue[i] / totalfit) cumsum(newfitvalue) ms = []; poplen = len(pop) for i in range(poplen): ms.append(random.random()) #random float list ms ms.sort() fitin = 0 newin = 0 newpop = pop while newin poplen: if(ms[newin] newfitvalue[fitin]): newpop[newin] = pop[fitin] newin = newin + 1 else: fitin = fitin + 1 pop = newpop
標題名稱:python函數目標,python的設計目標
分享URL:http://m.kartarina.com/article12/hdpdgc.html
成都網站建設公司_創新互聯,為您提供動態網站、服務器托管、App開發、域名注冊、網站收錄、靜態網站
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯