泛型的作用是指定集合里面所能存放的數據類型。
創新互聯專業為企業提供蒼南網站建設、蒼南做網站、蒼南網站設計、蒼南網站制作等企業網站建設、網頁設計與制作、蒼南企業網站模板建站服務,十余年蒼南做網站經驗,不只是建網站,更提供有價值的思路和整體網絡服務。
比如你定義一個用戶信息集合,里面用來存放用戶對象的。不允許存放其他類型的數據,則可以定義一個list集合,泛型里面的類型為用戶對象User,這樣從里面取出來的對象就是一個User的對象了。
注解的使用的地方一般在類的頭部、方法的頭部、方法體里面使用,分別用來描述:
類的創建日期,作者,修改記錄,類的描述等信息;
方法的功能描述,參數描述等;
代碼塊的功能描述,變量的作用記錄等。
有泛型參數,泛型方法,這篇文件寫的很好,你仔細 讀一下,可以多讀幾次,總會有收獲滴
java泛型
java泛型
什么是泛型?
泛型(Generic type 或者 generics)是對 Java 語言的類型系統的一種擴展,以支持創建可以按類型進行參數化的類。可以把類型參數看作是使用參數化類型時指定的類型的一個占位符,就像方法的形式參數是運行時傳遞的值的占位符一樣。
可以在集合框架(Collection framework)中看到泛型的動機。例如,Map 類允許您向一個 Map 添加任意類的對象,即使最常見的情況是在給定映射(map)中保存某個特定類型(比如 String)的對象。
因為 Map.get() 被定義為返回 Object,所以一般必須將 Map.get() 的結果強制類型轉換為期望的類型,如下面的代碼所示:
Map m = new HashMap();
m.put("key", "blarg");
String s = (String) m.get("key");
要讓程序通過編譯,必須將 get() 的結果強制類型轉換為 String,并且希望結果真的是一個 String。但是有可能某人已經在該映射中保存了不是 String 的東西,這樣的話,上面的代碼將會拋出 ClassCastException。
理想情況下,您可能會得出這樣一個觀點,即 m 是一個 Map,它將 String 鍵映射到 String 值。這可以讓您消除代碼中的強制類型轉換,同時獲得一個附加的類型檢查層,該檢查層可以防止有人將錯誤類型的鍵或值保存在集合中。這就是泛型所做的工作。
泛型的好處
Java 語言中引入泛型是一個較大的功能增強。不僅語言、類型系統和編譯器有了較大的變化,以支持泛型,而且類庫也進行了大翻修,所以許多重要的類,比如集合框架,都已經成為泛型化的了。這帶來了很多好處:
類型安全。 泛型的主要目標是提高 Java 程序的類型安全。通過知道使用泛型定義的變量的類型限制,編譯器可以在一個高得多的程度上驗證類型假設。沒有泛型,這些假設就只存在于程序員的頭腦中(或者如果幸運的話,還存在于代碼注釋中)。
Java 程序中的一種流行技術是定義這樣的集合,即它的元素或鍵是公共類型的,比如“String 列表”或者“String 到 String 的映射”。通過在變量聲明中捕獲這一附加的類型信息,泛型允許編譯器實施這些附加的類型約束。類型錯誤現在就可以在編譯時被捕獲了,而不是在運行時當作 ClassCastException 展示出來。將類型檢查從運行時挪到編譯時有助于您更容易找到錯誤,并可提高程序的可靠性。
消除強制類型轉換。 泛型的一個附帶好處是,消除源代碼中的許多強制類型轉換。這使得代碼更加可讀,并且減少了出錯機會。
盡管減少強制類型轉換可以降低使用泛型類的代碼的羅嗦程度,但是聲明泛型變量會帶來相應的羅嗦。比較下面兩個代碼例子。
該代碼不使用泛型:
List li = new ArrayList();
li.put(new Integer(3));
Integer i = (Integer) li.get(0);
該代碼使用泛型:
ListInteger li = new ArrayListInteger();
li.put(new Integer(3));
Integer i = li.get(0);
在簡單的程序中使用一次泛型變量不會降低羅嗦程度。但是對于多次使用泛型變量的大型程序來說,則可以累積起來降低羅嗦程度。
潛在的性能收益。 泛型為較大的優化帶來可能。在泛型的初始實現中,編譯器將強制類型轉換(沒有泛型的話,程序員會指定這些強制類型轉換)插入生成的字節碼中。但是更多類型信息可用于編譯器這一事實,為未來版本的 JVM 的優化帶來可能。
由于泛型的實現方式,支持泛型(幾乎)不需要 JVM 或類文件更改。所有工作都在編譯器中完成,編譯器生成類似于沒有泛型(和強制類型轉換)時所寫的代碼,只是更能確保類型安全而已。
泛型用法的例子
泛型的許多最佳例子都來自集合框架,因為泛型讓您在保存在集合中的元素上指定類型約束。考慮這個使用 Map 類的例子,其中涉及一定程度的優化,即 Map.get() 返回的結果將確實是一個 String:
Map m = new HashMap();
m.put("key", "blarg");
String s = (String) m.get("key");
如果有人已經在映射中放置了不是 String 的其他東西,上面的代碼將會拋出 ClassCastException。泛型允許您表達這樣的類型約束,即 m 是一個將 String 鍵映射到 String 值的 Map。這可以消除代碼中的強制類型轉換,同時獲得一個附加的類型檢查層,這個檢查層可以防止有人將錯誤類型的鍵或值保存在集合中。
下面的代碼示例展示了 JDK 5.0 中集合框架中的 Map 接口的定義的一部分:
public interface MapK, V {
public void put(K key, V value);
public V get(K key);
}
注意該接口的兩個附加物:
類型參數 K 和 V 在類級別的規格說明,表示在聲明一個 Map 類型的變量時指定的類型的占位符。
在 get()、put() 和其他方法的方法簽名中使用的 K 和 V。
為了贏得使用泛型的好處,必須在定義或實例化 Map 類型的變量時為 K 和 V 提供具體的值。以一種相對直觀的方式做這件事:
MapString, String m = new HashMapString, String();
m.put("key", "blarg");
String s = m.get("key");
當使用 Map 的泛型化版本時,您不再需要將 Map.get() 的結果強制類型轉換為 String,因為編譯器知道 get() 將返回一個 String。
在使用泛型的版本中并沒有減少鍵盤錄入;實際上,比使用強制類型轉換的版本需要做更多鍵入。使用泛型只是帶來了附加的類型安全。因為編譯器知道關于您將放進 Map 中的鍵和值的類型的更多信息,所以類型檢查從執行時挪到了編譯時,這會提高可靠性并加快開發速度。
向后兼容
在 Java 語言中引入泛型的一個重要目標就是維護向后兼容。盡管 JDK 5.0 的標準類庫中的許多類,比如集合框架,都已經泛型化了,但是使用集合類(比如 HashMap 和 ArrayList)的現有代碼將繼續不加修改地在 JDK 5.0 中工作。當然,沒有利用泛型的現有代碼將不會贏得泛型的類型安全好處。
二 泛型基礎
類型參數
在定義泛型類或聲明泛型類的變量時,使用尖括號來指定形式類型參數。形式類型參數與實際類型參數之間的關系類似于形式方法參數與實際方法參數之間的關系,只是類型參數表示類型,而不是表示值。
泛型類中的類型參數幾乎可以用于任何可以使用類名的地方。例如,下面是 java.util.Map 接口的定義的摘錄:
public interface MapK, V {
public void put(K key, V value);
public V get(K key);
}
Map 接口是由兩個類型參數化的,這兩個類型是鍵類型 K 和值類型 V。(不使用泛型)將會接受或返回 Object 的方法現在在它們的方法簽名中使用 K 或 V,指示附加的類型約束位于 Map 的規格說明之下。
當聲明或者實例化一個泛型的對象時,必須指定類型參數的值:
MapString, String map = new HashMapString, String();
注意,在本例中,必須指定兩次類型參數。一次是在聲明變量 map 的類型時,另一次是在選擇 HashMap 類的參數化以便可以實例化正確類型的一個實例時。
編譯器在遇到一個 MapString, String 類型的變量時,知道 K 和 V 現在被綁定為 String,因此它知道在這樣的變量上調用 Map.get() 將會得到 String 類型。
除了異常類型、枚舉或匿名內部類以外,任何類都可以具有類型參數。
命名類型參數
推薦的命名約定是使用大寫的單個字母名稱作為類型參數。這與 C++ 約定有所不同(參閱 附錄 A:與 C++ 模板的比較),并反映了大多數泛型類將具有少量類型參數的假定。對于常見的泛型模式,推薦的名稱是:
K —— 鍵,比如映射的鍵。
V —— 值,比如 List 和 Set 的內容,或者 Map 中的值。
E —— 異常類。
T —— 泛型。
泛型不是協變的
關于泛型的混淆,一個常見的來源就是假設它們像數組一樣是協變的。其實它們不是協變的。ListObject 不是 ListString 的父類型。
如果 A 擴展 B,那么 A 的數組也是 B 的數組,并且完全可以在需要 B[] 的地方使用 A[]:
Integer[] intArray = new Integer[10];
Number[] numberArray = intArray;
上面的代碼是有效的,因為一個 Integer 是 一個 Number,因而一個 Integer 數組是 一個 Number 數組。但是對于泛型來說則不然。下面的代碼是無效的:
ListInteger intList = new ArrayListInteger();
ListNumber numberList = intList; // invalid
最初,大多數 Java 程序員覺得這缺少協變很煩人,或者甚至是“壞的(broken)”,但是之所以這樣有一個很好的原因。如果可以將 ListInteger 賦給 ListNumber,下面的代碼就會違背泛型應該提供的類型安全:
ListInteger intList = new ArrayListInteger();
ListNumber numberList = intList; // invalid
numberList.add(new Float(3.1415));
因為 intList 和 numberList 都是有別名的,如果允許的話,上面的代碼就會讓您將不是 Integers 的東西放進 intList 中。但是,正如下一屏將會看到的,您有一個更加靈活的方式來定義泛型。
類型通配符
假設您具有該方法:
void printList(List l) {
for (Object o : l)
System.out.println(o);
}
上面的代碼在 JDK 5.0 上編譯通過,但是如果試圖用 ListInteger 調用它,則會得到警告。出現警告是因為,您將泛型(ListInteger)傳遞給一個只承諾將它當作 List(所謂的原始類型)的方法,這將破壞使用泛型的類型安全。
如果試圖編寫像下面這樣的方法,那么將會怎么樣?
void printList(ListObject l) {
for (Object o : l)
System.out.println(o);
}
它仍然不會通過編譯,因為一個 ListInteger 不是 一個 ListObject(正如前一屏 泛型不是協變的 中所學的)。這才真正煩人 —— 現在您的泛型版本還沒有普通的非泛型版本有用!
解決方案是使用類型通配符:
void printList(List? l) {
for (Object o : l)
System.out.println(o);
}
上面代碼中的問號是一個類型通配符。它讀作“問號”。List? 是任何泛型 List 的父類型,所以您完全可以將 ListObject、ListInteger 或 ListListListFlutzpah 傳遞給 printList()。
類型通配符的作用
前一屏 類型通配符 中引入了類型通配符,這讓您可以聲明 List? 類型的變量。您可以對這樣的 List 做什么呢?非常方便,可以從中檢索元素,但是不能添加元素。原因不是編譯器知道哪些方法修改列表哪些方法不修改列表,而是(大多數)變化的方法比不變化的方法需要更多的類型信息。下面的代碼則工作得很好:
ListInteger li = new ArrayListInteger();
li.add(new Integer(42));
List? lu = li;
System.out.println(lu.get(0));
為什么該代碼能工作呢?對于 lu,編譯器一點都不知道 List 的類型參數的值。但是編譯器比較聰明,它可以做一些類型推理。在本例中,它推斷未知的類型參數必須擴展 Object。(這個特定的推理沒有太大的跳躍,但是編譯器可以作出一些非常令人佩服的類型推理,后面就會看到(在 底層細節 一節中)。所以它讓您調用 List.get() 并推斷返回類型為 Object。
另一方面,下面的代碼不能工作:
ListInteger li = new ArrayListInteger();
li.add(new Integer(42));
List? lu = li;
lu.add(new Integer(43)); // error
在本例中,對于 lu,編譯器不能對 List 的類型參數作出足夠嚴密的推理,以確定將 Integer 傳遞給 List.add() 是類型安全的。所以編譯器將不允許您這么做。
以免您仍然認為編譯器知道哪些方法更改列表的內容哪些不更改列表內容,請注意下面的代碼將能工作,因為它不依賴于編譯器必須知道關于 lu 的類型參數的任何信息:
ListInteger li = new ArrayListInteger();
li.add(new Integer(42));
List? lu = li;
lu.clear();
泛型方法
(在 類型參數 一節中)您已經看到,通過在類的定義中添加一個形式類型參數列表,可以將類泛型化。方法也可以被泛型化,不管它們定義在其中的類是不是泛型化的。
泛型類在多個方法簽名間實施類型約束。在 ListV 中,類型參數 V 出現在 get()、add()、contains() 等方法的簽名中。當創建一個 MapK, V 類型的變量時,您就在方法之間宣稱一個類型約束。您傳遞給 add() 的值將與 get() 返回的值的類型相同。
類似地,之所以聲明泛型方法,一般是因為您想要在該方法的多個參數之間宣稱一個類型約束。例如,下面代碼中的 ifThenElse() 方法,根據它的第一個參數的布爾值,它將返回第二個或第三個參數:
public T T ifThenElse(boolean b, T first, T second) {
return b ? first : second;
}
注意,您可以調用 ifThenElse(),而不用顯式地告訴編譯器,您想要 T 的什么值。編譯器不必顯式地被告知 T 將具有什么值;它只知道這些值都必須相同。編譯器允許您調用下面的代碼,因為編譯器可以使用類型推理來推斷出,替代 T 的 String 滿足所有的類型約束:
String s = ifThenElse(b, "a", "b");
類似地,您可以調用:
Integer i = ifThenElse(b, new Integer(1), new Integer(2));
但是,編譯器不允許下面的代碼,因為沒有類型會滿足所需的類型約束:
String s = ifThenElse(b, "pi", new Float(3.14));
為什么您選擇使用泛型方法,而不是將類型 T 添加到類定義呢?(至少)有兩種情況應該這樣做:
當泛型方法是靜態的時,這種情況下不能使用類類型參數。
當 T 上的類型約束對于方法真正是局部的時,這意味著沒有在相同類的另一個 方法簽名中使用相同 類型 T 的約束。通過使得泛型方法的類型參數對于方法是局部的,可以簡化封閉類型的簽名。
有限制類型
在前一屏 泛型方法 的例子中,類型參數 V 是無約束的或無限制的 類型。有時在還沒有完全指定類型參數時,需要對類型參數指定附加的約束。
考慮例子 Matrix 類,它使用類型參數 V,該參數由 Number 類來限制:
public class MatrixV extends Number { ... }
編譯器允許您創建 MatrixInteger 或 MatrixFloat 類型的變量,但是如果您試圖定義 MatrixString 類型的變量,則會出現錯誤。類型參數 V 被判斷為由 Number 限制 。在沒有類型限制時,假設類型參數由 Object 限制。這就是為什么前一屏 泛型方法 中的例子,允許 List.get() 在 List? 上調用時返回 Object,即使編譯器不知道類型參數 V 的類型。
三 一個簡單的泛型類
編寫基本的容器類
此時,您可以開始編寫簡單的泛型類了。到目前為止,泛型類最常見的用例是容器類(比如集合框架)或者值持有者類(比如 WeakReference 或 ThreadLocal)。我們來編寫一個類,它類似于 List,充當一個容器。其中,我們使用泛型來表示這樣一個約束,即 Lhist 的所有元素將具有相同類型。為了實現起來簡單,Lhist 使用一個固定大小的數組來保存值,并且不接受 null 值。
Lhist 類將具有一個類型參數 V(該參數是 Lhist 中的值的類型),并將具有以下方法:
public class LhistV {
public Lhist(int capacity) { ... }
public int size() { ... }
public void add(V value) { ... }
public void remove(V value) { ... }
public V get(int index) { ... }
}
要實例化 Lhist,只要在聲明時指定類型參數和想要的容量:
LhistString stringList = new LhistString(10);
實現構造函數
在實現 Lhist 類時,您將會遇到的第一個攔路石是實現構造函數。您可能會像下面這樣實現它:
public class LhistV {
private V[] array;
public Lhist(int capacity) {
array = new V[capacity]; // illegal
}
}
這似乎是分配后備數組最自然的一種方式,但是不幸的是,您不能這樣做。具體原因很復雜,當學習到 底層細節 一節中的“擦除”主題時,您就會明白。分配后備數組的實現方式很古怪且違反直覺。下面是構造函數的一種可能的實現(該實現使用集合類所采用的方法):
public class LhistV {
private V[] array;
public Lhist(int capacity) {
array = (V[]) new Object[capacity];
}
}
另外,也可以使用反射來實例化數組。但是這樣做需要給構造函數傳遞一個附加的參數 —— 一個類常量,比如 Foo.class。后面在 ClassT 一節中將討論類常量。
實現方法
實現 Lhist 的方法要容易得多。下面是 Lhist 類的完整實現:
public class LhistV {
private V[] array;
private int size;
public Lhist(int capacity) {
array = (V[]) new Object[capacity];
}
public void add(V value) {
if (size == array.length)
throw new IndexOutOfBoundsException(Integer.toString(size));
else if (value == null)
throw new NullPointerException();
array[size++] = value;
}
public void remove(V value) {
int removalCount = 0;
for (int i=0; isize; i++) {
if (array[i].equals(value))
++removalCount;
else if (removalCount 0) {
array[i-removalCount] = array[i];
array[i] = null;
}
}
size -= removalCount;
}
public int size() { return size; }
public V get(int i) {
if (i = size)
throw new IndexOutOfBoundsException(Integer.toString(i));
return array[i];
}
}
注意,您在將會接受或返回 V 的方法中使用了形式類型參數 V,但是您一點也不知道 V 具有什么樣的方法或域,因為這些對泛型代碼是不可知的。
使用 Lhist 類
使用 Lhist 類很容易。要定義一個整數 Lhist,只需要在聲明和構造函數中為類型參數提供一個實際值即可:
LhistInteger li = new LhistInteger(30);
編譯器知道,li.get() 返回的任何值都將是 Integer 類型,并且它還強制傳遞給 li.add() 或 li.remove() 的任何東西都是 Integer。除了實現構造函數的方式很古怪之外,您不需要做任何十分特殊的事情以使 Lhist 是一個泛型類。
java 泛型是java SE 1.5的新特性,泛型的本質是參數化類型,也就是說所操作的數據類型被指定為一個參數。這種參數類型可以用在類、接口和方法的創建中,分別稱為泛型類、泛型接口、泛型方法。
泛型(Generic type 或者 generics)是對 Java 語言的類型系統的一種擴展,以支持創建可以按類型進行參數化的類。可以把類型參數看作是使用參數化類型時指定的類型的一個占位符,就像方法的形式參數是運行時傳遞的值的占位符一樣。
可以在集合框架(Collection framework)中看到泛型的動機。例如,Map 類允許您向一個 Map 添加任意類的對象,即使最常見的情況是在給定映射(map)中保存某個特定類型(比如 String)的對象。
因為 Map.get() 被定義為返回 Object,所以一般必須將 Map.get() 的結果強制類型轉換為期望的類型,如下面的代碼所示:
Map m = new HashMap();
m.put("key", "blarg");
String s = (String) m.get("key");
要讓程序通過編譯,必須將 get() 的結果強制類型轉換為 String,并且希望結果真的是一個 String。但是有可能某人已經在該映射中保存了不是 String 的東西,這樣的話,上面的代碼將會拋出 ClassCastException。
理想情況下,您可能會得出這樣一個觀點,即 m 是一個 Map,它將 String 鍵映射到 String 值。這可以讓您消除代碼中的強制類型轉換,同時獲得一個附加的類型檢查層,該檢查層可以防止有人將錯誤類型的鍵或值保存在集合中。這就是泛型所做的工作。
泛型的好處
Java 語言中引入泛型是一個較大的功能增強。不僅語言、類型系統和編譯器有了較大的變化,以支持泛型,而且類庫也進行了大翻修,所以許多重要的類,比如集合框架,都已經成為泛型化的了。
這帶來了很多好處:
1,類型安全。 泛型的主要目標是提高 Java 程序的類型安全。通過知道使用泛型定義的變量的類型限制,編譯器可以在一個高得多的程度上驗證類型假設。沒有泛型,這些假設就只存在于程序員的頭腦中(或者如果幸運的話,還存在于代碼注釋中)。
2,消除強制類型轉換。 泛型的一個附帶好處是,消除源代碼中的許多強制類型轉換。這使得代碼更加可讀,并且減少了出錯機會。
3,潛在的性能收益。 泛型為較大的優化帶來可能。在泛型的初始實現中,編譯器將強制類型轉換(沒有泛型的話,程序員會指定這些強制類型轉換)插入生成的字節碼中。但是更多類型信息可用于編譯器這一事實,為未來版本的 JVM 的優化帶來可能。由于泛型的實現方式,支持泛型(幾乎)不需要 JVM 或類文件更改。所有工作都在編譯器中完成,編譯器生成類似于沒有泛型(和強制類型轉換)時所寫的代碼,只是更能確保類型安全而已。
Java語言引入泛型的好處是安全簡單。泛型的好處是在編譯的時候檢查類型安全,并且所有的強制轉換都是自動和隱式的,提高代碼的重用率。
泛型在使用中還有一些規則和限制:
1、泛型的類型參數只能是類類型(包括自定義類),不能是簡單類型。
2、同一種泛型可以對應多個版本(因為參數類型是不確定的),不同版本的泛型類實例是不兼容的。
3、泛型的類型參數可以有多個。
4、泛型的參數類型可以使用extends語句,例如T extends superclass。習慣上成為“有界類型”。
5、泛型的參數類型還可以是通配符類型。例如Class? classType = Class.forName(Java.lang.String);
泛 型還有接口、方法等等,內容很多,需要花費一番功夫才能理解掌握并熟練應用。在此給出我曾經了解泛型時候寫出的兩個例子(根據看的印象寫的),實現同樣的 功能,一個使用了泛型,一個沒有使用,通過對比,可以很快學會泛型的應用,學會這個基本上學會了泛型70%的內容。
泛型(Generictype或者generics)是對Java語言的類型系統的一種擴展,以支持創建可以按類型進行參數化的類。可以把類型參數看作是使用參數化類型時指定的類型的一個占位符,就像方法的形式參數是運行時傳遞的值的占位符一樣。\x0d\x0a可以在集合框架(Collectionframework)中看到泛型的動機。例如,Map類允許您向一個Map添加任意類的對象,即使最常見的情況是在給定映射(map)中保存某個特定類型(比如String)的對象。\x0d\x0a因為Map.get()被定義為返回Object,所以一般必須將Map.get()的結果強制類型轉換為期望的類型,如下面的代碼所示:\x0d\x0a\x0d\x0aMapm=newHashMap();\x0d\x0a\x0d\x0am.put("key","blarg");\x0d\x0a\x0d\x0aStrings=(String)m.get("key");\x0d\x0a\x0d\x0a要讓程序通過編譯,必須將get()的結果強制類型轉換為String,并且希望結果真的是一個String。但是有可能某人已經在該映射中保存了不是String的東西,這樣的話,上面的代碼將會拋出ClassCastException。\x0d\x0a理想情況下,您可能會得出這樣一個觀點,即m是一個Map,它將String鍵映射到String值。這可以讓您消除代碼中的強制類型轉換,同時獲得一個附加的類型檢查層,該檢查層可以防止有人將錯誤類型的鍵或值保存在集合中。這就是泛型所做的工作。\x0d\x0a泛型的好處\x0d\x0aJava語言中引入泛型是一個較大的功能增強。不僅語言、類型系統和編譯器有了較大的變化,以支持泛型,而且類庫也進行了大翻修,所以許多重要的類,比如集合框架,都已經成為泛型化的了。這帶來了很多好處:\x0d\x0a·類型安全。泛型的主要目標是提高Java程序的類型安全。通過知道使用泛型定義的變量的類型限制,編譯器可以在一個高得多的程度上驗證類型假設。沒有泛型,這些假設就只存在于程序員的頭腦中(或者如果幸運的話,還存在于代碼注釋中)。\x0d\x0aJava程序中的一種流行技術是定義這樣的集合,即它的元素或鍵是公共類型的,比如“String列表”或者“String到String的映射”。通過在變量聲明中捕獲這一附加的類型信息,泛型允許編譯器實施這些附加的類型約束。類型錯誤現在就可以在編譯時被捕獲了,而不是在運行時當作ClassCastException展示出來。將類型檢查從運行時挪到編譯時有助于您更容易找到錯誤,并可提高程序的可靠性。\x0d\x0a·消除強制類型轉換。泛型的一個附帶好處是,消除源代碼中的許多強制類型轉換。這使得代碼更加可讀,并且減少了出錯機會。\x0d\x0a盡管減少強制類型轉換可以降低使用泛型類的代碼的羅嗦程度,但是聲明泛型變量會帶來相應的羅嗦。比較下面兩個代碼例子。\x0d\x0a該代碼不使用泛型:\x0d\x0a\x0d\x0aListli=newArrayList();\x0d\x0a\x0d\x0ali.put(newInteger(3));\x0d\x0a\x0d\x0aIntegeri=(Integer)li.get(0);\x0d\x0a\x0d\x0a該代碼使用泛型:\x0d\x0a\x0d\x0aListli=newArrayList();\x0d\x0a\x0d\x0ali.put(newInteger(3));\x0d\x0a\x0d\x0aIntegeri=li.get(0);\x0d\x0a\x0d\x0a在簡單的程序中使用一次泛型變量不會降低羅嗦程度。但是對于多次使用泛型變量的大型程序來說,則可以累積起來降低羅嗦程度。\x0d\x0a·潛在的性能收益。泛型為較大的優化帶來可能。在泛型的初始實現中,編譯器將強制類型轉換(沒有泛型的話,程序員會指定這些強制類型轉換)插入生成的字節碼中。但是更多類型信息可用于編譯器這一事實,為未來版本的JVM的優化帶來可能。\x0d\x0a由于泛型的實現方式,支持泛型(幾乎)不需要JVM或類文件更改。所有工作都在編譯器中完成,編譯器生成類似于沒有泛型(和強制類型轉換)時所寫的代碼,只是更能確保類型安全而已。\x0d\x0a泛型用法的例子
分享題目:JAVA泛型代碼注釋 java泛型聲明
鏈接地址:http://m.kartarina.com/article10/hgghgo.html
成都網站建設公司_創新互聯,為您提供App設計、用戶體驗、網站設計公司、全網營銷推廣、品牌網站制作、網頁設計公司
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯